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IV. A. Alumyae 

The purpose of this article is to review the basic differential 
equations, even if only in an approximate form of sufficient accuracy, 
which describe the equilibrium states of thin elastic shells after the 
loss of the stability of the fundamental form of equilibrium. 
dentally, there is developed a system of differential equations for the 
determination of the load for which there is a loss of stability of the 
basic form of equilibrium, and a qualitative picture of the strain 
after the loss of stability is investigated. However, the results 
obtained in the first three sections are more general and are applicable 
to the investigation of other problems of the equilibrium of thin elas- 
tic shells with finite displacements. 

Inci- 

The following assumptions are made in the pzper: (1) apart from 
finite displacements of the points of a shell in the postcritical stage, 
the deformations of the shell remain small; (2) the Kirchhof-Lyav 
kinetic hypothesis on the deformation of a shell is assumed; (3) the 
stressed state of the fundamental form of equilibriun is taken as with- 
out moments. 

1. The Deformation of the Mean Surface of a Shell During Finite 
Displacements. 
to internal coordinates XI and x2. 
used in the paper: 

The mean surface of a shell is considered to be related 
The following abbreviations will be 

r - radius vector of the point (x1,x2), r = r(x3, x2); 
ri = coordinate vectors, ri 
aij = components of the basic metric form, aij 

a - discriminant of the basic metric form, a - alla22 - a12a21; 
Cij - components of the discriminant tensor, Cii = 0, c12 = - c12 
n - unit vector along the normal, 2n = ccrB r+ x rp 
bij - components of the second metric form, bij - n & 
Vj - symbol for covariant differentiation. 
Let r3$ be the radius vector of a point after deformation, the 

r/d xi; 
ri rj; they 

are the components of a vector 

=-E; 

r/dxidxj; 

position of which before deformation is given by the radius vector r. 
In  the following we shall in general mark with an asterisk all quantities 
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related to the deformed mean surface. 
and x2 of the point considered do not change during deformation. 

The internal coordinates x1 

The transformation of the linear elements dr of the surface during 
deformation into dr+s can be represented by a homogeneous affine trans- 
formation in an infinitely small neighborhood 

where. V is the affine operator of the transformation. 
formation of the line elements considered can be resolved in the 
neighborhood of an arbitrary point into a rotation without deformation 
and a subsequent symmetric transformation [l], caused by a pure strain, 
with respect to the fundamental basis ri, n; after the rotation we 
shall refer to pi, m. 

The trans- 

Let the line element dr be transformed during rotation into a line 
element dp. Using an affine operator of rotation P this can be repre- 
sented as an isometric transformation in an infinitely small region 

d p = d r + d r . p  (1.2) 

as a particular case of (1.2) we get 

According to the conditions of an isometric transformation 

Pi Pj ri (1.4) 
The p m e  strain is given by a symmetric affine transformation 

in an infinitely small region after rotation: 

- d p + d p . D  (1.5) d r% 

The affine operator D we shall call the first strain tensor of 
the mean surface; it is symmetric by definition, that is, designating 
the covariant components of D by E ij, we have & i j 

of the first rank with vector components, therefore Vipi are the 
components of a tensor of the second rank with vector components 121. 

gji. 
From (1.3) it follows that the vectors pi form a covariant tensor 

From the resolution 
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it follows that Fi and 
and third rank. We shall c$!& the tensorp. 

can be found from the condition of integrability 

are the components of tensors of second 
the second strain tensor. 

1.j 

The relation of the tensor ‘k to the first strain tensor gSr 

where ry is supposed to be of the forin 

which represents a particular case of the expression (1.5). 

The vector equation (1.7) gives three consistency equations 
satisfied by the strain 

(1.10) 

Furthermore by covariant differentiation with respect to xk 
o equation (1.4j it is not hard to find a skew-symmetric tensor ‘2: ijk relative to the indices k,k: 

s’nce the tensor < j k  is defined by only two quantities, let us say 
tj, let 

cijk Cik L (1.11) 

t j - c  VP gaj (1.12) 

t from equation In the case of small strain it is easy to find j (1.9): 
dB 

The resolution of (1.6) must obviously satisfy the Ricci identity 

where R j h  are the components of the Riemann tensor of curvature. 
In order to develop this vector equation we note that covariant 
differentiation of the equations 
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pi  m 0, m * m = 1  

with respect t o  xj  gives us 

The Ricci identity (1.13) gives us three scalar equations sat is-  
f ied by the s t ra in  

and to these equations m a y  be added the consistency equation (1.10) 
sa t i s f ied  by the strain. 

In the case of small displacements one m a y  neglect in these 
equations terms that are nonlinear with respect to the components of 
the f i r s t  and second s t ra in  tensors. The equations obtained in this 
way fo r  the s t ra in  agree with the equations published by A. L. 
Go1 rdenveyzer3. 

2. Sta t ic  Relations During Finite Displacements. In the absence 
of a l inear theory of shells we shall investigate the equilibria of 
elements of the shell  in the deformed, i.e., the f ina l  state. 

Let T i n  be the reduced principal vector of forces and PIi- 
the reduced principal moment of forces ( re la t ive- to  a point on the 
mean surface) acting on the coordinate surface x1 = const. 

Starting from the condition of equilibrium of an.elemen+ry triangle 
cut from the shell  i t  is not diff icul t  t o  show that T1 and PI1 are 
tensors of the f i r s t  rank with vector components. 

We resolve T i  and Mi along the vectors pi  and m: 

Since p -  is a covariant tensor of the f i r s t  rank, i t  follows from 
(2.1) tha t  T j j  and P I i j  are contravariant tensors of the-second rank, 
say tensors of the tangential forces and moments, and N1 is a contra- 
variant vector of the transverse forces. 

‘de coFider  an element of the shel l  bounded by the coordinate 
surfaces XI+ xi + dxi = const. and the external surface z - *1/2 t. 
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We designate the principal vector of a l l  the external forces 
acting on this element of the she l l  by X n  dxl dx* and l e t  

X=X& + ~ m  
*CL 

Furthermore, we designate the principal moment of a l l  the external 
forces acting on the element of the shell considered by Iq dxl yx2 
and l e t  

The conditions of equilibrium of the she l l  require 

(2.3) 

t ha t  

In  the developed form we obtain the equation 

In the following, fo r  the in i t i a l  position of the shel l  we shal l  
assume the position that  precedes the loss of s t ab i l i t y  of the funda- 
mental form of the equi l ibr ia .  
constant and without momeQlp, We denote the tensor of the tangential 
forces in th i s  slate by TIJ and the components of the principal vector 

After the loss  of s t ab i l i t y  of of the external forces by X(o), X(o), 
the f u n h e n t a l  form of the equilibrium there ar ises  a mixed stressed 
state, characterized by the internal conditions 

We suppose that the i n i t i a l  stress is 

( 0 )  
i 

which is accompanied by a f i e ld  of external forces 

xi ’ q o ) i  + Y i ,  x = X(0) + Y 
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It is obvious tha t  in the equilibrium state 

( 2.12) 

3. The Laws of Elasticity. Taking the distribution of s t r a in  
through the thickness of the shell  in accordance w i t h  the hypothesis of 
Kirchhof-Lyav, i t  is not hard to show that within the l i m i t s  of accuracy 
of t h i s  hypothesbs [L] the relations between tsle tensors of the internal 
forces and the s t r a in  tensors are not a t  a l l  different from those in the 
theory of small displacements. 

For th i s  purpose we must assume that apart from the f i n a l  displace- 
ment of the mean surface the deformations remain small, and consequently 
terms of the so r t  cis€? p. E.& can be neglected in comparison w i t h  

the ternsCij,Ik. -. The refinement of the relations given below by non- 
l inear terns of !de type biOG /A+.= needs to  be done only in the case 
of infinitely small s t ra ins  of f h s t  order, the concept of which is 
given below in Section 6. However, f o r  the shells used in engineering 
construction this view of strain, obviously, can only be taken in very 
excmtional cases. and therefore this refinement of the relations 

1@ J 

is i o t  carried oui here. 
[SI. 

The student can find it in the work of Chien 

Omitting the calculations, we arrive a t  the f ina l  form [ 3 ]  

where 

here E is Young*s modulus, 3 is the 
thickness of the shell. It is also 
ships aa 

f i j  B* P i j a B S  9 fiij 

Poisson coefficient, and t is the 
easy t o  find the reverse relation- 

(3.3) 



i 

4. Determining the Cri t ical  Load, In the equilibrium s t a t e  
inf ini te ly  close to the fundamental equilibrium form, but q a l i t a t i v e l y  
differiqg f m  it.l+rough those same external conditions, SlJ, MiJ, 
N i j ,  5 lJ, and FIJ will be infinitely small quantities and therefore 
the i r  products in the differential  equations can be neglected. Then 
the equilibrium equations (2.10) - (2.13) have the fonn 

The equations fo r  the consistency of the s t ra in  w i l l  not be 
different from those of the l inear theory of shells; from (1.15), 
(1.16) and (1.10) we get 

The physical relations (3.1) and (3.3) are unchanged. 

The nonzero solution of the system (4.1)-(4.6) is possiblg-only 
f o r  definite values of the tensor of the tangentia1,forces %)lJ. 
The stressed state corresponding t o  the tensor  T(0)'J w i l l  be taken 
as the i n i t i a l  stressed state, 
referred t o  this state,  

The metric tensors a i j  and b i j  are also 

The value of the external loading for  which different forms of 
equilibrium are possible w i l l  as usual be called the c r i t i ca l  loading. 

Certain s t a t i c  properties of shells are defined by the values of 
three geometrical parameters: 
radius of curvature R, and the smallest dimension of the shell  Lo 

the thickness of the shel l  t, the l ea s t  

The shell '  is 
camber of a shell  

called thin i f  the rat io  t/L -1 is small. 
is characterized by the ra t io  L/R; l e t  

The - 
L/R - kr 
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It is convenient t o  consider shells as cambered fo r  which r b O ;  
in addition if r >/ 1 we consider the she l l  m t r e m e l y  cambered. 
CQmbered and extremely cambered shells w i l l  be the object of further 
invest i g  a t  i on . 

We take the quantity L as unity and relate the mean surface of 
the shel l  to a coordinate system having the property t h a t  the principal 
terms of the tensor a * - r J l .  Such an auxiliary limitation is feasible 
f o r  cambered shells: 'it is useful f o r  the qualitative analysis of the 
fundamental equations presented a t  the beginning of this section. For 
such a system of coordinates the principal value of the tensor b i j -p .  
In  the following we shall say tha t  the tensor t i j  is commensurable with rt i f  the principal t e rm of the tensor ti  j -rt. 

In the equations (4,1)-(4.6) let the principal t e rm of the tensor 
P i j  ve the valuefiand l e t  the tensors E 
with&%e and E 
Then according to (3.1) the tensors S1J and I P J  are commensurable w i t h  
EwAe*l and E&>3 respectively, 
ation l e t  the order of the unknowns be changed by a factor ofhok, so 
that, for  instance, 

T(oli j  be commensurable 
respectively where e a$c are s t i l l  unknown. 

Furthemore, during covariant differenti- 

Here k is also a s t i l l  undefined quantity. It is not d i f f i cu l t  to 
find the physic 1 
a she l l  w i l l  be\d\kL. 

lue of k: the wave length of a protruding wall of 

Ile shal l  distinguish two types of s t ra in  during the l o s s  of s t ab i l i t y  
of the fundamental equilibriun form. 
the shel l  during the loss of s tab i l i ty  is: 
by& 
f i r s t  order i f  uie tens04 vi  9 

In case (a) obviously 

Let us say tha t  the mea surface of 
(a) rigid,  i f  the tensors 

p B  > and vi 6 - e mn are cmensurable,  and (b) nonrigid t o  
is cmensurdble with the tensor 

r = e - 2 k  

and in case (b) 

r + 1 = e  - 2 k  
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Cambered Shells (r& 01 

. The qualitative analysis of eqyation (4.2) 
loading will be smallest when e = 2k = 1; 

in this case c assumes the value 1. 
i t  is apparent that in  equations (4.1)-(4.6) one may neglect certain 
nonessential terns. Namely, in the detennination of the c r i t i c a l  
loadina i t  is sufficient t o  consider the equations 

After determining these quantities 

Y 

E O  
aP - 

- 0 ,  c s Q i  

vas a6 (4.7) 

as the equations of equilibrium, and the equations 

(4.9) 

as the equations of consistency of strain;  the terms omitted are  of 
order h w i t h  respect t o  the terms retainedL. 
we sha l l  say simply that the tlterms omitted are  of order x 
are of this order with respect to the terms retained.] 
these equations we have the physical relations (3.1)* 

llIJote: In  the following 
if they 

In addition t o  

Strain of Type (b). The analysis of equation (4.2) shows that c 

'? Since equation (4.5) can be 
t o  verify that in equations (4.7) 
will have a m a x i m i  f o r  e = c - 1.5, and here 2k = 0.5. 

while in equations (4.9) of order 
written in the form 

hf 
rms omitted are of order 

in order to determine p. 
homogeneous equations. 
inf ini te ly  small first-order deflections. 

we obtain the f u l l  system of l inear  ?i is the fundamental system of equations of 

I n  Section 6 i t  is proved that in  a l l  cases of the loss of 
stabil i ty* i .  can be expressed by means of a function of the dis- 
placements W, damely f i i j=v i  v (4. 11) 

j 
A n  inf ini te ly  small first-order deflection with a loss  of s t ab i l i t y  
is realizable if I? is the solution of the boundary problem that 
sa t i s f i e s  the different ia l  equation 
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and certain boundary conditions imposed in the problem of the loss of 
s t ab i l i t y  of the fundamental equilibrium forme 
be lacking, but nonetheless i t  is possible that in a rather large r e  ion 

1.5. The analysis as carried out f o r  c and k refers to an inf in i te ly  
small region of the shell, but the results obtained hold in  general f o r  
a l l  shel ls  if the s t ra in  is qualitatively homogeneous Over the whole 
mean surface, In  the opposite case the c r i t i c a l  loading increases on 
account of the more r ig id  regions. 

This solution m a y  a lso 

s t ra ins  of type (b) simply do not occur. Then, of course, l.O<c 9 

Extremely Cambered Shell  ( r  b 1) 

Strain of Type (a). The qualitative analysis shows that s t ra ins  
of the shell are characterized by values of k - 0, e - 1, and the 
parameter that defines the c r i t i c a l  loading c = 2; The c r i t i c a l  s t a t e  
is determined by equations (L7)-(belO), and the terms omitted a re  now 
of order X 2 e  
deflection of the mean surface occurs. 

When there is a lo s s  of stability an inf in i te ly  small 

Strain of Type (b). The c r i t i c a l  loading can be determined from 
the equation 

Here the tern omitted is of o r d e r h .  
the present case also, c - 2, k - Om 

It is easily found that in  

These results were f i rs t  obkined by Zoelly [ lo]  who applied an 
energetic meth 
the parameter 

to determine the c r i t i c a l  loading. We note that f o r  
in Zoelly(s work the ration t/R is taken. 

Conclusions. 
is always 
l eas t  -T- hoe In f a c t  fo r  a loss of s t ab i l i t y  in  shells, we cannot 
determine in advance f o r  any particular practical  case that the s t r a in  
w i l l  be of type (b), and therefore i t  is proper in  th i s  case to start 
from the more general equations (4e7)-(IJeIO)e 

A t  the end of the paper equations ( I Je7 )0 (Le lO)  w i l l  be presented 
in  a form more convenient f o r  integration. 

The preceding analysis shows that the c r i t i c a l  loading 
etermined by equations (4e7)-(IJelO) t o  an accuracy of a t  

5. Equilibrium of a Shell  in the Postcr i t ical  Stage. The 
equilibrium s t a t e  of a she l l  a f te r  the loss of stability of the funda- 
mental (without moments) equilibrium s t a t e  is determined by the 
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equilibrium equations (2.10)-(2.13) and the s t ra in  consistency equations 
(Lis), (1.16) and (1.10), and also the components of the tensors of 
s t ra in  and internal forces are connected by the p h p i c a l  relations (3.1) 
o r  (3.3). However this system is rather complex f o r  carrying ou t  
computations, and we shall atternpt through qualitative analysis of the 
postcr i t ical  stage to retain only essential terms in these equations. 

I?e consider a certain equilibrium state of a she l l  in the post- 

.and%m respectively, then &$fozxIing & $3.1) c r i t i ca l  stage. In th i s  s te l e t  the tensors E i .  and be 
commensurable with 
the tensors S i j  and WJ are comensurable with EX 
respectively. The quantities e and m are bounded below, since a l l  
stresses must be within the elast ic  l i m i t s .  For the sake of s i m  l i f i -  

where bp is the l i m i t  of the proportionality. 
obvious tha t  the equilibrium equations (2.10)-(2.13) can be replaced by 
the system 

and EAm* 

cation we take m >/ 0 and e >0 1; these values hold i f  6P /E = 5 
F i r s t  of a l l  i t  is 

@a i va sai - ( b . ~ - p ~ g l ) v p  + y i  = o (5.1) 

but further simplifications are  as yet unfounded. 

In order for  our discussion t o  be applicable t o  the widest area, 
we shall assume tha t  the external loading does not change essentially 
a f t e r  a loss  of stabil i ty.  

Immediately after a l o s s  of stabil i ty,  as we saw in Section 4, the 
s t r a in  of a shel l  is characterized by the f ac t  tha t  covariant differ-  
entiation increases the order of the unknown Wantities, generally 
speaking by a factor of kk. 
increase of the deformation in the postcri t ical  stage this property 
would change numerically even i f  only by a l i t t l e  bi t ,  since this  
would require a qualitative change of the f i e ld  of the displacements. 
The load f o r  which such a qualitative change of the f i e l d  of displace- 
ments occurs is called the second c r i t i c a l  loading. We shall consider 
the equilibrium of a shel l  in  a stage between the f i r s t  two c r i t i c a l  
loadings. 

It should not be assumed however w i t h  an 

The classification of the states of shells are based on the 
properties of the consistency equations (1.16). 
strains of the mean surface of the shel l  with relatively l a q e  

We shall say f i a t  
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displacements, the f i e ld  of which is qualitatively determined w i t h  the 
loss  of s t ab i l i t y  of the fundamental equilibrium form is ( A )  r igid i f  
the tensors b i  j 
and (B) nonrigid of f i r s t  o g e r  if the tensor 3bij +h o r  wi  - P h  
is commensurable with the tensor)& vi vj Consequentb f o r  
strains of type (A) 

o r  CL' * an d v i  V . G b  are commensmle, 

r +m-e - 2 k  if r 4  m 

2m-e - 2k if r > m  

f o r  s t ra ins  of type (B) 

r + m -e - 2k - 1 if r < m  

2m-e - 2k - 1 if r > m  

In the following we shall consider the equilibrium state of 
cambered and extremely cambered shells in  the pos tc r i t i ca l  stage with 
f i n i t e  displacments with rigid (A) and nonrigid (i3) st rains  of the 
mean surface, distinguished fo r  this case from the r i g i d  (a) and non- 
rigid (b) strains of the mean surface fo r  the loss of stabil i ty.  

However, a consideration of the change from a nonrigid s t r a i n  of 
type (b) into a r igid s t ra in  of type (A) o r  on the other hand from (a) 
to (B) requires an analysis of the s t ra in  in  the transit ion region, which 
we shall c a l l  the semirigid s t ra in  of the mean surface and denote by (C), 

Quantitatively the s t r a in  of type (C) is determined by the relations 

r + m w e  - 2k - 0,s if r < m 

The analysis carried out concerning the order of the individual 
quantities in the basic equation f o r  f i n i t e  displacements shows tha t  i n  
a l l  cases i t  is possible to employ the simplified equations 

instead of (Lis), (1.10) and (sol), (5 .3) .  
orders of the terms omitted with respect to those retained; if ,  for  
instance, they are of orderko*S th i s  is shown in the table by the 
number 0.5, 

In Table 1 are  shown the 
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Occasionally certain terms in equations (1.16) and (5.2) are also 
unimportant. The order of these terms is also shown in the table in the 
same form as mentioned above, 

We have limited our consideration of equilibrium s ta tes  in the 
postcr i t ical  stage during large displacements, the f i e ld  of which is 
qualitatively detemined during a lo s s  of s tab i l i ty  of the fundamental 
equilibrium form, 
already defined for  c r i t i c a l  loading, 

Thus, the wave length of a protruding wall is 

However in the postcri t ical  s b g e  there nay exis t  other equilibrium 
foms, fo r  which the f ie ld  of displacements is qualitatively different 
from those considered, For these forms there might  be a quite different  
wave length for  a protruding wall, and therefore one should not consider 
that equations (1.16), (SOL), (5.2) and (5.5) are sufficiently complete 
for the definition of the equilibrium forms mentioned, 

i j and consequently also the tensor S i j  also contain, The tensor 
generally speaking, parts which do not increase with differentiation, 
but th i s  does not change the results of the analysis. 

6. The Introduction of the Displacement and Stress Functions. A 
very simple qualitative investigation of the postcr i t ical  stage of both 
cambered and extremely cambered shells has shoim tha t  the most general 
system of differential  equations is required to consider cases 1 and 7 
of Table 1 where the basic system consists of equations (1,16), (5,4), 
(5.2) and (5.5) with a l l  terms. A l l  the remaining alternatives are 
obtained from this  system by omitting certain nonessential terms and 
not adding new ones, 

Practically, i t  is always proper to  use the system (1.16), (SOL), 
(5.2) and (5.5) because in the solution of actual problems we cannot 
tell in advance whether the s t ra in  of the mean surface f o r  large dis- 
placements w i l l  be nonrigid o r  not. 
r igid strain,  new terms in the equations are not necessary. 

However, we now know that for  non- 

The nature of the s t ra in  in the postcr i t ical  region o r  rather a 
small gaussian curvature of extremely cambered shells makes i t  possible 
t o  express the components of the second s t ra in  tensor by means of a 
scalar function of the displacement IFJ: 

Actually the right-hand equation of (5.k) sa isf ies  this  identically 
and the left-hand one does t o  an accuracy ofx2" i!! k. 



In the same way it can be shown the equations (5.5) in case 
Yi D= 0 are satisfied to an accuracy of at leastk2*2k if 

F is an arbitrary scalar function, the so-called stress function. 

Functions of the displacement W and the stress F are determined 
fm equations (1.16) and (5.2). 
through W using the physical relations (3.4) and (3.l), we get two 
equations 

Expressing Cij through F and PIij 

In the derivation of these equations unimportant terms are intro- 
duced on changing the order of differentiation. 

Equations (6.3) and (6.4) are the fund;unental differential equations 
for determining equilibrium states in the postcritical stage of shell if 
the tangential component of the external load yl has a negligible value 
in the left-hand equation of (5.5). 

In the particular case of a flat plate the basic equations (6.3) 
and (6.4) do not differ from the equations of von ICarman for flat plates 
[SI. 
equations were obtained by Chien [8] as a particular case ( 1 12) 
during the investigation of thin plates and shells. 

These equations for t e case of a circular cylindrical shell were 
first derived by L. Donne11 k and later by Tsien [71. Finall these 

The basic equations for the determination of the critical loading 
(4.7)-(4.10) can be brought to the following form in the same way 

Equations (6.5) and (6.6) in an orthogonal coordinate system 
were first published by V. Z. Vlasov C9]. 
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